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Abstract—This Master Capstone Project Report applies var-
ious oblivious data structures to the etcd key-value datastore
to provide private and secure client-server computation using
oblivious computation. The subfield of oblivious computation
is a hot topic in cybersecurity, as it was invented in the late
1980s and was revived in the early 2010s, as indicated by the
PathORAM research paper. After PathORAM made oblivious
data structures’ implementation and performance viable for real-
world use, researchers worldwide have recently been applying
oblivious computation to cloud computing, as the previous
standard of end-to-end encryption is nowadays insufficient to
preserve client security and privacy and prevent adversarial
attacks from servers and third parties, causing massive legal
liability concerns for server operators. This paper applies three
recent oblivious data structures (PathORAM, vORAM+HIRB,
and EMM) to an etcd client protocol with comprehensive testing,
verification, and benchmarking.

Index Terms—oblivious computation, oblivious data structures,
ODS, oblivious RAM, ORAM, vORAM, access patterns, HIRB,
vORAM+HIRB, secure deletion, encrypted multi-map, EMM,
searchable encryption, structured encryption, searchable sym-
metric encryption, provable security, privacy, storage.

I. INTRODUCTION

PRIVACY and security have been a concern for human
beings since the development of human civilizations

[1]. Concealed messages have been used since ancient times
and are frequently documented in historical records. Privacy
and security have changed dramatically with the advent of
electronic computers, which process information at a highly
rapid speed and scale [2]. This led to the development of the
scientific subfield of cybersecurity, as it underpins all modern
electronics, computers, and electronically controlled devices.
In other words, cybersecurity is an essential component of
contemporary life, as without it, no sensitive computation
could reasonably occur, and computers could not be used in
any fields dealing with sensitive information [3].
The first modern cybersecurity subfield was end-to-end en-
cryption, starting with the Diffie-Hellman key exchange al-
gorithm in 1976 [4]. The end-to-encryption paradigm was
quite successful, as it enabled almost perfect security until the
early 2010s, when quantum computers were built (as future
powerful quantum computers could easily break key exchange
algorithms with Shor’s Algorithm), and inference attacks were
developed, as described in Islam et al. and Grubbs et al, [5] [6].
This forced the classic end-to-end encryption-based security
approach to be supplemented by stronger methods.
Also, around the early 2010s, an old subfield of cybersecurity
was rediscovered: oblivious computation. Goldreich and Os-
trovsky founded the subfield of oblivious computation in the

late 1980s, which was initially intended to secure commercial
software against piracy [7]. They developed the oblivious
random access memory (ORAM) data structure, in which
all accessed data is continuously shuffled and encrypted to
obscure data access patterns. ORAM ensures that an eaves-
dropping adversary cannot detect any pattern to the client’s
ORAM accesses, and thus the privacy and security of the
client’s computation are preserved. However, the performance
of Goldreich and Ostrovsky’s ORAM was impractical, espe-
cially on the far less powerful computers of their day.
The first breakthrough in modern oblivious computation was
by Emil Stefanov et al. in 2012, who invented a simple yet
far more performant ORAM data structure, called PathORAM,
by using a novel binary search tree design that limited its
worst-case overhead to O(log2 n) [8]. That made it practical to
use in computer software and hardware, and cloud computing
environments were no exception [9]. Due to this breakthrough,
many researchers have worked in this subfield, as they have
seen the potential to redefine modern cybersecurity [10].
In 2016, Roche et al. followed up by developing the vO-
RAM+HIRB data structure, with vORAM defining novel
ways to interact with a generic ORAM efficiently and HIRB
being an efficient binary tree [11]. The authors integrated
vORAM and HIRB to form the vORAM+HIRB oblivious
map/dictionary data structure. Its performance was similar to
the original PathORAM with some additional metadata and
client-side overhead, still being O(log2 n), thus making it just
as practical as the original PathORAM. PathORAM could be
used as the generic ORAM for vORAM+HIRB.
In 2022, Alexandra Boldyreval and Tianxin Tang created the
Encrypted Multi-Map (EMM) data structure, which allowed
for no leakage of data access patterns, thus completely prevent-
ing all adversarial inference and frequency analysis attacks,
assuming trustworthy client software and hardware (although
side-channel attacks on the client are still a potent threat) [12].
This guarantees high security for all client-server communica-
tion, especially in a cloud computing environment. The authors
accomplished these impressive results using PathORAM as
a generic ORAM and any oblivious map/dictionary as a
generic oblivious map/dictionary. Its remarkable performance
was O(m log4 n), thus paying a reasonable cost for such
strong privacy and security guarantees.
Using a fictional but realistic example, let us demonstrate a
common cybersecurity problem in modern computing. Sup-
pose an electronic health record (EHR) company stores sensi-
tive financial and medical data collected from doctors’ offices
to provide easy and convenient access to sensitive informa-
tion, including for high-profile individuals. As is common
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nowadays, the EHR company stores its data as a database
for greater performance, scalability, and more straightforward
data computation. They store the database and perform all
computations online with a third-party cloud provider to allow
consistent and fast access for the EHR client. Fearful of the
obvious security risks of storing sensitive data in plaintext,
the EHR company encrypts its database with proper end-to-
end encryption using a symmetric key-exchange algorithm
such as RSA. However, the EHR company was shocked
to discover that, one day, the sensitive information of all
users was leaked for sale by cybercriminals and bought by
tabloids, who publicized the sensitive personal information of
high-profile individuals. Infuriated by the public exposure of
sensitive information that caused them great embarrassment
and lowered their reputations, high-profile individuals who had
their privacy violated sued the EHR company for legal liability,
won the legal case, and the EHR company paid an enormous
amount of legal fees to their lawyers and damages to the high-
profile individuals. This negative publicity causes doctors’
offices to stop using the EHR company due to patient demands
and legal liability reasons, which forces the EHR company
to cease operation due to a lack of revenue. How was this
accomplished, despite using ”modern security techniques”?
The answer lies in the lack of oblivious computation. As the
third-party cloud server provider, in any reasonable cyberse-
curity model for sensitive information, obviously cannot be
trusted, the weak link in the end-to-end security model of
the EHR was that the data access patterns were leaked to
the server or to an eavesdropping adversary, which allowed
the attacker to perform an inference/frequency analysis attack
to compromise the security and privacy of the EHR’s clients.
This example demonstrates that we need better network, cloud,
and database security methods, as the state-of-the-art end-to-
end encryption for databases stored on a server is insufficient
to prevent inference/frequency analysis attacks.
Therefore, we proposed that we integrate PathORAM, vO-
RAM+HIRB, and EMM and apply them to a plaintext etcd
client-server communication protocol in such a fashion that
all communication will be secured entirely from all non-client
adversaries with all known attacking techniques, including ma-
licious server and network eavesdropper attackers, assuming
the client is to be trusted. This would guarantee that the attacks
in the fictional example will never occur, as the untrusted
client-server network connection and etcd server could never
perform an inference/frequency analysis attack, as the client
will not leak any data access patterns. However, it is still
possible that an attacker could compromise the client itself.
Thus, the privacy and security of all safe clients would be
safeguarded, and the legal liability of the server operator would
be reduced (as all remaining attacks target the client, which is
not the operator’s responsibility). This effort is called Locker
2.0.

II. RELATED WORK

We have chosen the three oblivious data structures (ODS)
used in Locker 2.0: PathORAM as a generic ORAM,
vORAM+HIRB as a generic oblivious map/dictionary, and

EMM as a generic oblivious multi-map. EMM utilizes
vORAM+HIRB while vORAM+HIRB uses PathORAM to
function, so we have included a detailed explanation of all
three oblivious data structures. We will cover PathORAM,
vORAM, HIRB, vORAM+HIRB, EMM, and ORAM system
designs in that order as separate Subsections.

A. PathORAM
PathORAM is a variant of TreeORAM, which was the first

binary-tree-based ORAM data structure when it was published
in 2011. However, the cybersecurity community did not utilize
TreeORAM much, as TreeORAM is quite complicated and in-
efficient compared to later ORAM data structures. PathORAM
was the first modern ORAM adopted by the cybersecurity
community, as it was much more efficient and easier to
understand and implement. It is still the current consensus
ORAM data structure, as many later research papers either
explicitly utilize PathORAM or allow any generic ORAM data
structure to be used, including PathORAM. It disguises all data
access patterns from all network eavesdropping adversaries
and malicious servers, preventing all inference/frequency anal-
ysis attacks. However, it is still vulnerable to a side-channel
attack on the client.
PathORAM, like TreeORAM, has a classic binary tree of N
leaf nodes storing a bucket of Z blocks and logN levels (Z = 4
is typically optimal). For data access, a recursive position
map is created and stored on the server to fetch data access
paths to/from the binary tree using the leaf identifier (lid)
metadata on each block. The client-to-server eviction process
occurs after every data access. By these methods, the untrusted
server cannot distinguish whether a read or write operation
has happened, as it can only observe that the client fetches
a consistent data path and puts it back onto the server with
fresh randomness. Deleting data involves writing an empty
value, while updating data consists of writing a new value to
its existing memory location.
However, that is where the similarities between PathORAM
and TreeORAM end. PathORAM creates a local client storage
space stash that will tell the client to fetch a whole path
from the server and write to the client’s stash, bound to
O(logN)ω(1), for data accesses and re-assigning the target
block with a randomly generated leaf identifier, thus leaving
the equivalent server’s tree-path empty. This method forces
the client to read/write all data locally in the stash whenever
possible. However, there are cases when blocks must be
evicted from the client’s stash to the server’s binary tree,
which is conducted greedily from the bottom of the empty path
to the top by iterating over the client’s stash and filling the
server’s tree with blocks from the stash. This greedy eviction
process allows all buckets to keep the Z storage requirement
constant while ensuring that the client’s stash overflowing
would be a negligible prospect. PathORAM takes O(log2 N)
time for the greedy eviction process and O(logN) time for the
recursive position map operations, thus making PathORAM
take O(log3 N) time with a O(log2 N) network bandwidth.
The client’s stash is bounded by O(logN), and when Z = 4
(as recommended), the server requires O(4N) space.
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Fig. 1. Marten van Dijk’s, one of the original authors of the PathORAM
paper, illustration of the high-level PathORAM system design.

B. vORAM

To support an oblivious dictionary/map, it is necessary to
modify a generic ORAM data structure, called vORAM, to
allow for varying block sizes without trivial padding and to
create a history-independent data structure, called HIRB, that
uses vORAM as a subcomponent. vORAM and HIRB are then
integrated to form an oblivious data structure for a key-value
map/dictionary to support the creation, reading, updating,
and deleting (CRUD) data operations while preserving the
history of all old operations. All client operations (including
their data access patterns) and the client’s history of old
operations are entirely hidden from any malicious server or
network eavesdropping adversary, which prevents them from
performing any inference/frequency analysis attacks. These
methods provide a high security standard.
The vORAM construction of a generic ORAM data structure
aims to hide the size of varying-sized items from all network
eavesdropping adversaries and malicious adversaries by uti-
lizing a more efficient method than trivial padding. vORAM
is an extension of ORAM with variable-sized blocks and was
implemented in the research paper using PathORAM with a
fixed bucket size (Z = 4 as described in the PathORAM
Subsection), but with each bucket allowed the freedom to
contain as many variable-sized blocks/partial blocks as the
bucket space allows. vORAM also permits blocks to be stored
across multiple buckets in the same path. These alterations do
not affect the time and space complexity of PathORAM while
allowing HIRB to be implemented, thus paving the ground for
the vORAM+HIRB data structure.

C. HIRB

The History-Independent Randomized B-tree, shortened
to the HIRB tree, is a variant of the classical B-tree
data structure that supports all the features necessary for
oblivious computation. In short, the HIRB tree must be a
bounded-height tree-based data structure that supports unique
representation, which is needed for security and performance
reasons. The essential features of the HIRB tree are listed:

1) The HIRB tree must have a unique representation such
that the pointer contents and structure are defined by
some initial randomization and the set of (label, value)

pairs stored within. This property is needed to guarantee
strong historical independence for security reasons.

2) The HIRB tree must support the easy partitioning of
blocks with a geometrically-bounded vORAM storage
bound for the block’s expected size. This property is
needed for performance and implementation reasons.

3) The HIRB tree’s memory access patterns must be
bounded by the chosen ORAM’s fixed parameter. This
property is needed to support all ORAMs.

4) The HIRB tree must support pointers, and the structure
of blocks and pointers must be a valid arborescence
with at most one pointer per block. This property is
needed to support non-recursive ORAMs.

The HIRB tree has the same functionality as a B-Skip List
that forms a top-down tree, removes pointers between skip
nodes, and sorts labels using a hash function. It is a B-tree,
with a fixed-height at H = logβ n+ 1, defined in such a
way that the level for a newly-inserted item is computed by
logβ n trials of pseudorandom-biased coin flipping, where β
is the expected blocking factor for the initialized blocking
factor B. The HIRB tree allows for merges and splits, but
rotations are prohibited. These constraints ensure that every
operation causes at most 2H nodes to be visited, thus leading
to performance gains compared to a standard AVL tree or
B-Skip List.
An usual HIRB tree has large nodes with a branching factor
of k within the range [B + 1, 2B] according to some B-tree
parameters B ≥ 1, k, with a k-node having k − 1 values,
k − 1 labels, and k children. Using these terms as standard
terminology, let us define a HIRB tree with its unique
initialization parameters: the height H and the expected
branching factor β (contrasted to the standard B-Skip
list’s branching factor of B). The other non-initialization
parameters are the length of hash digests γ, the length of
the hash function |Hash(label)| = max(2H lg β + γ, λ) for
some λ ∈ {0, 1}, and the maximum number of distinct labels
n. A HIRB tree node i with a branching factor of k has size
nodesizei = (k+1)(2T+γ+1)+k(|Hash(label)|+|value|),
k − 1 values, k vORAM identifiers for child nodes’ pointers
with size 2T +γ+1, and k−1 label hashes. The height must
always be H ≥ logβn to prevent root nodes from growing
too much. For best results with a node i, β must be computed
by solving a ∗ nodesizeβ ≤ Z, where 6 ≤ a ≤ 20 and Z is
the size of the vORAM bucket.
HIRB trees’ initialized branching factor B has a relaxed range
of k ∈ [1,∞] within a geometric distribution for the ORAM’s
storage, defined as a random variable X drawn independently
from a geometric distribution with expected value β as a
B-tree parameter. HIRB trees define the height of a node as
the path length from itself to the leaf node (as all nodes share
the same distance to the root node in a B-tree, thus making
the distance from a node to the root node useless as a path
length metric). The height of a newly inserted (label, value)
node is calculated by a series of pseudorandom-biased coin
flips according to the label’s hash, which guarantees that
the distribution of selected heights for insertions uniquely
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Fig. 2. The authors of the vORAM+HIRB paper’s illustration of the
insertion/deletion process inside a HIRB tree. The original caption was:
”HIRB insertion/deletion of X = (Hash(label), value): On the left is the
HIRB without item X , displaying only the nodes along the search path for
X , and on the right is the state of the HIRB with X inserted. Observe that
the insertion operation (left to right) involves splitting the nodes below X
in the HIRB, and the deletion operation (right to left) involves merging the
nodes below X .”

determines the HIRB tree’s structure by its deterministic
process (due to the usage of a pseudorandom-biased coin flip
and not a truly random one). Thus, the HIRB tree supports
the property of unique representation.
For all HIRB trees, initially, an empty HIRB tree of height H
is created. Inserting/removing an element onto the HIRB tree
requires the respective splitting/merging of nodes along the
top-down (from the height of the item down to the leaf node)
search path to the chosen element, with insertions/deletions
performed at the selected label hash height inside the
tree. Setting/deleting an item onto the HIRB tree requires
calculating the given label’s height with sampling from
a geometric distribution with probability β−1

β and then
derandomizing, utilizing a pseudorandom number sequence
based on the result of Hash(label) for the derandomization.
To support oblivious computation, every operation mandates
reading exactly 2H + 1 nodes by padding with ”dummy”
accesses as needed, so any operation cannot be distinguished
from all others, thus hiding all data access patterns from
all network eavesdropper adversaries and malicious server
(although the risk of side-channel attacks is still present).

We must use a secure pseudorandom generator, like the
SHA-1 software library, for HIRB to be safe. However,
various other secure pseudorandom generators exist, such
as the Permuted Congruential Generator (PCG) and Linear
and Multiplicative with XOR (LXM) pseudorandom generator
algorithms [15]. This means that the HIRB tree can only
fail with a hardware failure, an incorrect implementation, a
faulty/unsafe pseudorandom generator, a hash collision due
to too many inserted elements, or a successful side-channel
attack.

D. vORAM+HIRB

The vORAM+HIRB construction is relatively simple, as
all an implementer needs to do is choose a valid ORAM
(like PathORAM), construct the vORAM data structure as a
modification of the chosen ORAM, construct the HIRB tree

data structure using the vORAM abstraction already built,
and expose an external interface for all external libraries
to use the vORAM and HIRB together. After all of these
steps, the implementation of the vORAM+HIRB constructor
is finished.
After a successful implementation, we could guarantee that,
under reasonable circumstances, the vORAM+HIRB data
structure provides secure deletion, obliviousness, and history
independence with a negligible leakage of O(n + nλ

logn )
data operations. The only reasonable vulnerability it has is
side-channel attacks. Therefore, vORAM+HIRB is a very
secure and practical oblivious map/dictionary with excellent
performance and many convenient guaranteed properties.

E. EMM

The encrypted multi-map data structure, shortened to EMM,
is a fundamental data structure intended initially for search-
able/structured encryption (the authors claim that EMM is a
protocol, but EMM is an oblivious data structure that operates
between the trusted client and the untrusted server through an
untrusted network connection). It was designed for situations
that required robust data security by hiding all data access
pattern information, including data and query metadata, access
patterns, volume patterns, and query patterns from all non-
client adversaries using known attacking techniques, including
network eavesdroppers and malicious servers (although side-
channel attacks on the client are still a credible threat). It
requires a generic ORAM data structure, such as PathORAM,
and an encrypted dictionary based on a B-Skip List or AVL
tree data structure, such as vORAM+HIRB. EMM supports
updates and batching at the cost of some performance, which
makes it far more practical than similarly robust security
solutions that usually either leak some data access patterns
or are static and do not provide the ability to handle data
updates. Thus, EMM is well suited for networked database
applications, so we chose this data structure as the main one
for Locker 2.0.
The authors intended that EMM be used for clients with
limited sublinear data storage and the same secret key and
sync state connecting to malicious servers with an encrypted
database. Notably, the authors allow servers not to use secure
trusted execution environments/hardware enclaves (Intel SGX
or similar hardware solutions) and to collude against the client
maliciously. These assumptions are far more relaxed than some
of the current oblivious computation literature’s assumptions,
which furthers trust in the security and privacy of EMM-based
solutions.
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The high-level description of EMM is listed:
1) Initialize a modified non-recursive position-based

ORAM that behaves like an encrypted array for the
encrypted map/dictionary’s generic ORAM.

2) Initialize a modified oblivious map/dictionary, using
the modified ORAM, that supports the ReadUp and
GetUp operations, which will behave like an encrypted
map/dictionary.

3) The client assigns each arbitrary label an ORAM in-
dex/block identification (block ID) while storing the
label’s associated value list in the ORAM index’s block,
padded for volume hiding purposes using the vORAM’s
technique. The client also stores its secret position map
alongside the label-index mapping.

4) Once the client is finished writing all of its pending
requests, the encrypted map/dictionary stores the map-
ping between the ORAM label-index mapping, but not
its secret position map, on the server.

5) Once the server is finished computing the client’s real
and dummy data, the client retrieves the data, filters
out its known dummy requests, and obtains its real data.

The generic ORAM they use is modified as a position-
based non-recursive ORAM. The oblivious map/dictionary
is modified to hide all data access patterns by hiding
access, query, and volume metadata with dummy requests.
The authors mostly keep the exact implementation details
described in PathORAM and vORAM+HIRB. Still, for
optimization purposes, they store the label’s assigned block
identification (ID) and position tag on a server-side encrypted
map/dictionary, which is only updated by the client, who
is the only one that knows the secret position map. The
two special EMM operations are GetUp and ReadUp, which
perform a Get then Update operation or a Read then Update
operation, respectively, which are combined to improve
performance by parallelism.
Overall, EMM is simply integrating an ORAM and an
oblivious map/dictionary to ensure robust data security by
leaking a negligible amount of data access patterns with two
rounds of communication of each O(logNram) and a constant
ORAM access cost of O(logNram) to form a total cost of
O(log2 Nram + logNram ∗ lmm⋆ ∗ maxv∈Vmm⋆ ∗|v|2) ≈
O(m log4 n), where Nram is the number of RAM requests.

F. Goldreich and Ostrovsky, Oblivious RAM (ORAM)

Oded Goldreich and Rafail Ostrovsky were the two cyber-
security researchers who invented the subfield of oblivious
computation. Goldreich was the first to publish a research
paper in the subfield in 1987 while Ostrovsky followed up
with one of his own in 1990. They were chiefly concerned
with the problem of securing computer software from piracy,
known as the problem of ”software protection”, as it was
a pressing problem in those days. At that time, there was
no comprehensive way to secure software from piracy, as
there were just one-off ”fixes” and probabilistic heuristics,
which could not guarantee comprehensive security. As a result,

commercial software makers of the time lost large sums of
money due to the twin tasks of allowing users to execute
programs, yet not allowing them to redistribute programs,
which was very hard to guarantee simultaneously. Goldreich
and Ostrovsky’s goals were the following:

1) Mathematically formalize the problem of protection
against illegitimate duplication as part of the software
protection problem.

2) Mathematically formalize the problem of protection
against redistribution/fingerprinting software as part of
the software protection problem.

3) Encapsulate the problems of protection against ille-
gitimate duplication and protection against redistribu-
tion/fingerprinting software as the key problem of the
attacker’s knowledge about a program from its execu-
tion.

4) Reduce the key problem of learning about a program
from its execution into an oblivious random-access
memory (ORAM) concept.

5) Devise an efficient software protection scheme to sim-
ulate an arbitrary RAM program on a probabilistic
oblivious RAM.

6) Mathematically demonstrate that, assuming one-way
functions exist, the software protection scheme is robust
against a polynomial-time adversary who is allowed
the freedom to change RAM contents during execution
dynamically.

Their methods were achieved by first defining a Software-
Hardware-package (SH-package) that physically shields a
computer’s Central Processing Unit (CPU) and runs an en-
crypted software program, similar to ATMs’ CPUs. The
SH-package is rendered functional due to the necessity of
physically protecting CPUs and encrypting software programs
from being tampered with by any adversary with physical
and digital access. A computer with an SH-package contains
a small Read-Only Memory (ROM) unit that includes a
decryption key for an encrypted program, such that only
programs successfully decrypted by the ROM unit key shall
be allowed to execute on the CPU. In other words, the CPU
is physically shielded while the software, I/O devices, and all
external components are digitally shielded. After this basic
level of security against tampering, we move on to another
problem: How could we prevent the user from knowing any
compromising information that the SH-package does not hide
from the adversary?
The answer is found within oblivious random access memory
(ORAM). They modeled the threat of an adversarial user who
attempts to learn compromising information about the program
that would enable illegal duplication and redistribution. The
adversary had the power to observe and modify everything in
the SH-package except for the shielded CPU’s registers and
ROM unit key. The adversary conducts experiments, which
are initiated executions of the shielded CPU on the encrypted
program and an adversarial-selected input that can watch and
modify CPU-memory communication and memory state, to
learn compromising information for an inference/frequency
analysis attack. A software-protected program is considered
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secure if reconstructing a functionally equivalent software-
protected program is not easier when conducting polynomial-
timed experiments on the SH-package than naively. More
formally, software protection is safe if a polynomial-time ad-
versary’s actions on encrypted software running on a shielded
CPU are the same as when having access to a specification
oracle that, when given an input, outputs the corresponding
output and running time. In other words, a software-protected
program must behave like a black-box that, upon any input,
computes and then returns a special output such that the only
information exposed to the adversarial user is its running time
and I/O behavior. This requires not only a normal SH-package
but also preserving the independence of the memory access
pattern, which is accomplished with ORAMs. Stated infor-
mally, a shielded CPU defeats experiments with corresponding
encrypted programs if a probabilistic polynomial-time (PPT)
adversary cannot tell whether it is experimenting with the real
shielded CPU or an ideal CPU that never enters infinite loops
and returns its theoretical output as if it had never infinite-
looped.
The theoretical ORAM system is as follows. The CPU and
memory are both Interactive Turing Machines (ITMs). ITMs
are bounded work, bounded space, and message multi-tape
Turing Machines with write-only output and communication
tapes, read-only input and communication tapes, and read-and-
write work tapes. The memory’s write-only communication
tape is the CPU’s read-only communication tape, and shares
the message length c. The CPU has a linear work tape in
message length, while the memory has an exponential work
tape. Every message has a register in the CPU’s work tape
and/or an address in the memory’s work tape. The memory
has finite control, which is its response to the CPU, while
the CPU’s finite control differs per CPU. The size of any
work tape is 2k ∗ k′, and the message length of any message
is k + 2 + k′ for any parameter k, k′. The memory is
probabilistic, while the CPUs can access a random oracle.
Assuming one-way functions exist, the CPU’s random oracle
has one read-only and one write-only oracle tape. All oracle
invocation state changes are made in one step to the read-only
oracle tape following the write-only oracle tape’s queue. A
probabilistic CPU is an oracle CPU that also has access to
a uniformly-selected function f : {0, 1}O(k) → {0, 1}. Thus,
an oblivious RAM (ORAM) is a probabilistic random access
memory (probabilistic RAM) such that the access patterns of
two separate inputs are identically distributed with the same
complexity analysis runtime. Therefore, we need an identical
oracle and a random oracle for the oblivious simulation of
RAM, as in experiments.
In the end, Goldreich and Ostrovsky pioneered the oblivious
computation landscape that is currently of such importance.
They were the first to define the subfield as distinct from
the rest of the cybersecurity world, mathematically formal-
ize many key assumptions and results that are still relied
upon today, and provide the general theoretical framework
for the subfield. However, they could not make the field of
oblivious computation practical, as their ORAM’s runtime of
O(t log t3) was far too large and their ORAM too complicated
to implement to be feasible in a real-world system. In short,

they laid the rails but did not build the train of modern
oblivious computation’s railway. However, we must note that
they were decades ahead of everyone else in the cybersecurity
community in noticing that security could not be guaranteed
with end-to-end encryption (as it would not work for software
protection back then), even though they could never have
imagined how modern cybersecurity researchers would use
their work today to enable global, secure, private, high-speed,
and scalable computation.

III. METHODS

We have split this Methods Section into several Subsections
that cover the high-level system design and all related infor-
mation during the development Phases 1−5 in Locker 2.0. We
have also added an extra Subsection for Locker 2.0’s caveats.

A. Locker 2.0’s High-Level System Design
Locker 2.0’s high-level system design follows a similar

design paradigm as several other oblivious computation data
storage solutions, such as MongoDB’s Data Encryption, Cos-
mian’s Findex server, and Clusion’s IEX [13] [14] [15].
MongoDB is a for-profit open-source NoSQL database storage
solution intended for large-scale and scalable cloud deploy-
ment. Cosmian is a for-profit open-source key-value database
storage solution for secure cloud deployment. Clusion is an
academic open-source database storage solution designed for
research and experimentation. These solutions are similar to
Locker 2.0 in that they support secure client-server computa-
tion with a trusted client, an untrusted network connection, and
a malicious server. However, they do not support Kubernetes
with etcd. Overall, these competitors to Locker 2.0 certainly
have their place, as they are excellent solutions themselves in
some instances, but only Locker 2.0 supports secure client-
server computation with a trusted client, an untrusted network
connection, and a malicious server for Kubernetes using etcd
as the backend key-value store data storage solution. Also,
how Locker 2.0 is implemented differs from how the other
solutions are implemented, even though they have the same
security goal.
Here is the high-level system design of Locker 2.0:

1) Phase 1: Develop a modular plaintext etcd client-
server communication protocol from scratch for client-
server create/read/update/delete (CRUD) operations.
This plaintext client-server protocol is insecure but per-
formant and easily extendable, allowing for additional
features, such as oblivious computation.

2) Phase 2: Utilize an already-existing and correct PathO-
RAM oblivious data structure (OBS) implementation
library as a generic oblivious random access memory
(ORAM) data structure. This enables oblivious com-
putation from the client to the server for the CRUD
operations, which is both performant and secure from
all non-client attacks using known attacking methods
(given a correct implementation and under reasonable
circumstances).

3) Phase 3: Utilize an already-existing and correct vO-
RAM+HIRB oblivious data structure (OBS) implemen-
tation library as a generic oblivious map/dictionary data
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structure using PathORAM as a component, enabling
basic read/write oblivious computation. This enables
key-value-based oblivious computation from the client to
the server for the CRUD operations, which is performant
and secure from all non-client attacks using known
attacking methods (given a correct implementation and
under reasonable circumstances).

4) Phase 4: Develop a comprehensive encrypted multi-
map (EMM) data structure based on Phase 2’s PathO-
RAM and Phase 3’s vORAM+HIRB. As we know that
PathORAM and vORAM+HIRB are already correct,
we can use vORAM+HIRB as a generic oblivious
map/dictionary data structure to implement the EMM.
This enables multi-map and key-value-based oblivious
computation from the client to the server for the CRUD
operations, which is both performant and secure from
all non-client attacks using known attacking methods
(given a correct implementation and under reasonable
circumstances).

5) Phase 5: Modify Phase 1’s plaintext etcd client-server
protocol to use Phase 4’s EMM for client-server cre-
ate/read/update/delete (CRUD) operations. The EMM
slows down the secure protocol from its plaintext variant
but grants complete security from all non-client adver-
saries using known attacking techniques while preserv-
ing compatibility with external API calls, meaning that
a client can call Locker 2.0’s secure etcd client-server
protocol the same way as with its plaintext counterpart.

B. Phase 1: etcd Client-Server Communication Implementa-
tion Details

The plaintext etcd client-server communication protocol
used in Phase 1 was written in the Go programming language
in the plaintext.go file and the original secure.go
file for the main Go module. Go was chosen for Phase 1
because it has automatic memory management and good etcd
and concurrency support. It utilizes Go’s etcd library to create
a modifiable external API address at HTTP port 500/etcd.
The external API supports HTTP POST requests from curl or
wget based on a JSON body of the given user’s ID, desired
operation, key, and value (for a write request).

C. Phase 2: PathORAM Oblivious Random Access Memory
(ORAM) Implementation Details

The PathORAM library used in Phase 2 was written by
GitHub users ”Jasleen1” and ”young-du” as an open-source
C++ implementation of the PathORAM oblivious random
access memory (ORAM). We had to modify the original
PathORAM implementation by extending the block size to
64 bytes to support messages of up to 64 bytes. This specific
size was chosen because we wanted the blocks to be small
enough to preserve obliviousness while being large enough
to contain short messages. Other than that, no other changes
were made to the source code, except modifications to enable
it to compile on a modern Fedora/RHEL Linux machine and
remove the git hidden directory to be self-contained inside the
GitHub repository.

However, getting the PathORAM library to correctly interface
with the secure.go file using cgo and be self-contained
inside the new custom oram Go module (to be compatible
with Phase 1’s secure.go) was a challenge in of itself. First,
we had to create a dummy.go and dummy.cpp filled with
nothing but cgo flags so that the Go compiler could recog-
nize the PathORAM interface code files PathORAM.go and
PathORAM.cpp. Next, we had to encapsulate all the PathO-
RAM library’s functionalities in PathORAM.cpp before ex-
ternally exposing it as C code to be used in PathORAM.go,
which finally was able to be included inside the oram Go
module. Also, we had to create a Bash script to dynamically
build the PathORAM library and link it for the Go compiler.
Since this subcomponent has already been built, new users of
Locker 2.0 should not need to build it again.

D. Phase 3: vORAM+HIRB Oblivious Map/Dictionary Imple-
mentation Details

The vORAM+HIRB library used in Phase 3 was written by
GitHub user ”dsroche” as an open-source Python implemen-
tation of the vORAM+HIRB oblivious map/dictionary, which
the research paper’s authors wrote. Keeping in tune with Phase
2’s PathORAM implementation, we had to modify the original
PathORAM implementation by extending the block size to 64
bytes to support messages of up to 64. Other than that, no other
changes were made to the source code, except modifications
to enable it to run on a modern Fedora/RHEL Linux machine
and remove the git hidden directory to be self-contained inside
the GitHub repository.
However, getting the vORAM+HIRB library to correctly inter-
face with the secure.go file using an internal HTTP server
and be self-contained inside the new custom hirb Go module
(to be compatible with Phase 1’s secure.go) was also
difficult. First, we had to operate an internal HTTP server for
the vORAM+HIRB library, inside its source directory, called
obliv_server.py under HTTP port 8236. Then, we
create a hirb.go file that encapsulates the vORAM+HIRB
library’s functionality and is a client of the HIRB library server
for the hirb module. Finally, the hirb.go file extensively
uses the oram module to provide the needed generic ORAM
implementation. Since this subcomponent has already been
built, new users of Locker 2.0 should not need to build it
again, but they need to run python obliv_server.py
in a separate terminal before using secure.go.

E. Phase 4: EMM Oblivious Multi-Map Implementation De-
tails

The EMM oblivious data structure (OBS) protocol used
in Phase 1 was written in the Go programming language in
the EMM_client.go file and the EMM_server.go file
for the new custom emm Go module (to be compatible with
Phase 1’s secure.go). It creates an internal HTTP server
that supports EMM’s functionality at HTTP port 8245/emm
(which is used inside secure.go). The EMM_client.go
file and the EMM_server.go file use the oram and hirb
modules extensively to provide the needed generic ORAM and
generic oblivious map/dictionary implementations.



THE UNIVERSITY OF CALIFORNIA, SANTA CRUZ, SPRING QUARTER 2025: CSE247B MASTER CAPSTONE REPORT FOR ISMAIL AHMED 8

F. Phase 5: Secure etcd Client-Server Protocol with EMM
Implementation Details

The secure.go file, as defined in Phase 1, is now
retrofitted to support oblivious computation with EMM as the
middleman between the etcd client’s requests and the server’s
consummate responses. The only possible way that any Locker
2.0’s four CRUD operations are fulfilled is by the EMM
acting as a secure courier between the client and the server.
As a result, the external API is altered to support the EMM
while retaining backward-compatibility with Original Locker’s
external API calls.

G. Caveats of Locker 2.0

However, a few implementation quirks in Locker 2.0
backward-compatibility are present. They will be enumerated
in the following list:

1) Each unique message has a maxi-
mum size of 64 bytes, as defined in
deps/PathORAM/include/Blocks.h,
deps/obliv/obliv_server.py, and
libs/emm/EMM_server.go.

2) Locker 2.0’s default URLs are defined in secure.go,
mains/proxy.go, mains/plaintext.go,
deps/obliv/obliv_server.py,
libs/hirb/hirb_client.go, and
libs/hirb/hirb_server.go.

3) All multiple-value JSON responses are returned as lists,
but all single-value JSON responses are returned as
strings.

4) Locker 2.0’s external API’s HTTP address
for plaintext.go and proxy.go is
127.0.0.1:5000, contrasted with secure.go’s
own external API’s HTTP address of
127.0.0.1:5000/etcd.

5) Locker 2.0’s etcd client’s read JSON requests ignore
the val field. Therefore, API developers should also
overlook the etcd server’s response’s val field.

IV. RESULTS

This Results Section is divided into three Subsections:
An Experimental Design Subsection that describes the A/B
comparison benchmarking of the Baseline Encrypted Mul-
tiMap (EMM) data structure versus the Plaintext MultiMap
data structure, an Experimental Results Subsection dedicated
to displaying all related Tables and Figures collected from
the benchmark data, and another Interpretation of Results
Subsection that interprets the benchmark data.

A. Experimental Design

We have conducted an A/B comparison test between
Locker 2.0’s Baseline Encrypted MultiMap (EMM) data struc-
ture, providing high security at a steep performance cost,
and a Plaintext MultiMap, offering no security with near-
optimal performance. Both scenarios were evaluated using
the testing_emm.go Go script, making direct library calls
without external networking to eliminate network-induced

variability.
The benchmark script comprises three phases: A Warm-Up
Phase that mixes reads and writes at a given read ratio, a
Delete Phase removing roughly half of the previously written
keys, and a Verification Phase confirming that the remaining
keys were retrievable. These phases were chosen to account
for every possible edge case. Tests were performed using
the medium_keys.txt dataset containing 79, 101 global
city names, initializing the etcd server. Each test scenario
had 10 users, a batch size of 3, a maximum value size of
3 bytes, 3 warm-up batches, and an initial 50% read ratio.
Benchmarks ran on an AMD64 architecture computer running
Fedora/RHEL Linux, equipped with an Intel i7 − 10700F
processor, GTX 1660 Super GPU, 16 GB DDR4 RAM, and a
256 GB magnetic storage drive.
We measured processor and memory utilization, peak RAM
usage, direct disk Input/Output (I/O) utilization, indirect cache
I/O utilization, and execution/wall-clock time as key per-
formance metrics. These carefully-chosen metrics reflect the
computing resource utilization of Locker 2.0, demonstrating
its real-world practicality. The 4 most extreme test runs, the
2 largest and 2 smallest, were discarded, and the remaining 3
test runs are averaged to remove all outliers. CRUD (Create,
Read, Update, and Delete) operations were logged temporarily
during each test run for recording purposes and then discarded.
All measures ensured that the Plaintext MultiMap and Baseline
EMM data structures were structurally identical to ensure
fairness.

B. Experimental Results

All benchmark data was compiled and logged in Locker
2.0’s EMM_benchmarks_results.log file in the root/
directory. Table I summarizes execution/wall-clock time,
processor and memory utilization, and peak RAM usage.
Table II outlines direct disk I/O utilization and indirect cache
I/O utilization. Figure 3 demonstrates the slight differences
in memory utilization but apparent differences in processor
utilization between the Plaintext MultiMap and the Base-
line EMM data structures. Figure 4 shows the negligible
differences in peak RAM usage for the Plaintext MultiMap
and the Baseline EMM data structures. Figure 5 displays
the no or insignificant differences in all disk and cache I/O
utilization except for the apparent discrepancies in indirect
cache reads for the Plaintext MultiMap and the Baseline EMM
data structures.
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Fig. 3. Relatively small differences in memory utilization but large differences
in processor utilization.

Fig. 4. Negligible differences in peak RAM usage (logarithmic scale on Y-
axis).

Fig. 5. No or negligible differences in direct disk I/O utilization and indirect
cache writes, but clear differences in indirect cache reads.

C. Interpretation of the Experimental Results

The benchmark results display the tradeoff between security
and performance. The Baseline EMM execution/wall-clock
time was 22.06−3.05

3.05 ≈ 7 times slower than the Plaintext
MultiMap. Memory utilization showed slight differences, with
the Baseline EMM consuming about 0.2591−0.2433

0.2433 ≈ 7%
more memory than its Plaintext MultiMap contemporary.
Remarkably, processor utilization was lower for the Baseline

EMM by approximately 0.1607−0.3231
0.3231 ≈ 50% less than its

Plaintext MultiMap counterpart. The peak RAM usage metric,
determined by the top process’ resident set size (RSS), was
marginally higher for the Baseline EMM, being 17877−17329

17329 ≈
3% more than its Plaintext MultiMap rival.
Disk I/O operations had no results due to Linux’s aggressive
caching strategy. Still, indirect cache reads were substantially
lower at 22−72

72 ≈ 69% less for the Baseline EMM than the
Plaintext MultiMap. Although indirect cache writes exhibited
minimal variation, with only a 128−125

125 ≈ 2% more difference
between the Baseline EMM contrasted to the Plaintext Mul-
tiMap.
After describing the data in detail, let us analyze how it
originated. First, the Baseline EMM implementation is the
same data structure as the normal EMM used in Locker 2.0,
with the client and server merged to remove the need for an
external network connection. This change is not secure, as
it would allow a malicious server full access to the client’s
state and thus allow for a trivial attack since they occupy the
same process. However, this A/B comparison test is not used
in production; it demonstrates the relative performance of the
Baseline EMM data structure versus the Plaintext MultiMap
equivalent data structure. Second, this test was conducted
on Fedora/RHEL Linux, which has an aggressive caching
approach that attempts to avoid direct disk read/writes at all
cost, which is why we have 0 direct disk read/writes in our
results, due to our memory accesses being warm and close
temporally and sequentially, which makes it easier for Linux
to cache them. It also appears that the Baseline EMM is
disk I/O bounded rather than CPU-bound like the Plaintext
MultiMap, which suggests either suboptimal concurrency or
long I/O wait times for the Baseline EMM. A visible memory
drop during the Baseline EMM’s runs is attributed to a likely
garbage collection (GC) event. Finally, there is high variance
recorded between several Baseline EMM individual runs due
to system environment noise.
These benchmark results highlight the ever-present tradeoff
between performance and security. Even though the Baseline
EMM and Plaintext MultiMap design and testing approaches
are identical, we still have varying performance caused by the
inherent slowdown that security requires.

V. FUTURE WORK

As a single developer developed Locker 2.0 in 10 weeks,
there was little time for performance optimization, leaving
plenty of room for performance improvements. Locker 2.0’s
only classic performance optimizations are implementing
the optimized version of oblivious data structures (ODS)
and batching client requests. Some remaining performance
optimizations are caching client requests for massive
efficiency improvements and other classical performance
optimizations, especially for sequential or frequent read/write
operations. Also, using the statistics collected from the
rigorous benchmarking, one could optimize the performance
of this program based on any bottlenecks present. Of course,
optimizing the ODS themselves or using more efficient
alternatives is also possible. However, altering the ODS for
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TABLE I
SMALL DIFFERENCES IN MEMORY UTILIZATION AND PEAK RAM USAGE, BUT CLEAR DIFFERENCES IN EXECUTION/WALL-CLOCK TIME AND PROCESSOR

UTILIZATION.

Table 1: Execution/Wall-Clock Time
(Seconds)

Memory Consumption
(Percentages)

Processor Consumption
(Percentages)

Peak RAM Usage
(Kilobytes)

No Security (Plaintext Mul-
tiMap)

3.05 24.33% 32.31% 17329

Strong Security (Baseline
EMM)

22.06 25.91% 16.07% 17877

TABLE II
NO OR NEGLIGIBLE DIFFERENCES IN DIRECT DISK I/O UTILIZATION AND INDIRECT CACHE WRITES, BUT CLEAR DIFFERENCES IN INDIRECT CACHE

READS.

Table 3: Direct Disk Reads (Sectors) Direct Disk Writes (Sectors) Indirect Cache Reads
(Sectors)

Indirect Cache Writes
(Sectors)

No Security (Plaintext Mul-
tiMap)

0 0 72 125

Strong Security (Baseline
EMM)

0 0 22 128

optimization is dangerous because performance optimizations
could inadvertently leak data access patterns and open the
door to inference/frequency analysis attacks from malicious
servers and network eavesdropping adversaries.
Outside of performance concerns, Locker 2.0 would also
benefit from adding new features that make it easier for
developers to improve Locker 2.0 and system administrators
to deploy it in real-world systems. These methods could
all be deployed as part of an Infrastructure-as-Code (IaC)
automated developer operations (DevOps) effort [16]. To form
a complete automated IaC DevOps deployment of Locker
2.0 with GitHub Actions (as it is natural to use it because
of Locker 2.0’s Git Repository being stored in GitHub), an
automatic build script, perhaps as a Bash script or Makefile,
would be written that had various options for the cleaning
of temporary files, the linting of all code files according to
a chosen few standard style guides for visual consistency,
and debugging flags that make it easier to find bugs within
the codebase [17]. A code scanning tool such as CodeQL
could be deployed to catch common errors and cybersecurity
vulnerabilities within Locker 2.0 and its dependencies [18].
Semantic versioning could ensure each version is labeled
in a structured order, and the status of Locker 2.0’s builds,
unit testing, and code coverage could be automatically
displayed using GitHub Actions to achieve continuous
integration/continuous deployment (CI/CD) [19] [20]. Since
Locker 2.0 is only tested on a single developer’s modern
Fedora/RHEL Linux distribution, the application could be
containerized with Docker such that all modern Linux,
macOS, and Windows operating systems could run Locker
2.0 inside a Docker container [21]. Finally, documentation
could be hosted on GitHub Pages on a website built with
Markdown and Jekyll [22]. Therefore, as mentioned earlier,
all of these tools could be integrated into GitHub Actions
and automatically updated with any change onto Locker 2.0.
These IaC improvements could make it much easier for a
developer to develop in Locker 2.0 or a system administrator
to deploy Locker 2.0 in a production system.

VI. CONCLUSION

Privacy and security are fundamental human goals. How-
ever, satisfying these goals has become increasingly com-
plex, given the rapid rise of electronic devices processing
information at tremendous speeds. Therefore, the modern
scientific subfield of cybersecurity was formed. The state-of-
the-art cybersecurity paradigm of end-to-end encryption has
worked exceptionally well for the last few decades, protecting
data content well. Still, the recent development of effective
inference/frequency analysis attacks using data access patterns
on encrypted data made end-to-end encryption a necessary but
insufficient method to achieve realistic and performant privacy
and security.
This has led the cybersecurity community to explore different
subfields to achieve realistic privacy and security. One promis-
ing approach is the subfield of oblivious computation, invented
by Goldreich and Ostrovsky in the late 1980s and early 1990s
to combat software piracy, which prevents all known attacks
by non-client adversaries at a substantial performance cost by
allowing clients to access memory obliviously and thus hide
their data access patterns. This has gained recent popularity
following the PathORAM research paper in 2013, which has
caused a flurry of recent research papers in the subfield of
oblivious computation. The vORAM+HIRB research paper
implemented an oblivious map/dictionary in 2016, while the
Encrypted Multi-Map (EMM) research paper implemented an
oblivious encrypted multi-map in 2022.
We have decided to apply these theoretical results to practical
computer systems, following the footsteps of oblivious data
storage solutions such as MongoDB, Cosmian, and Clu-
sion. In particular, we implemented oblivious computation for
Kubernetes environments using etcd, an equivalent solution.
This effort has borne fruit and is called Locker 2.0. Locker
2.0 prevents all known non-client attacks by implementing
an oblivious etcd client-server protocol using EMM as an
oblivious data structure (ODS), thus restricting the potential
attack surface to only client-side vulnerabilities, primarily
side-channel attacks against the client. It is a drop-in client;
External users only need to have their JSON requests comply
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with Locker 2.0’s external API, and Locker 2.0 will handle
all operations securely. Even though Locker 2.0 has plenty of
room for performance optimizations and additional features, it
is still the first-of-its-kind oblivious client-server protocol for
Kubernetes environments using etcd.
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