
Kubernetes & Etcd Are Not Secure, until Now

2025-10-14

Abstract
Modern computation is increasingly trending towards Internet cloud computing
performed by containers on shared rented powerful server computers managed
from a central third-party cloud server provider (Amazon Web Services, Microsoft
Azure, Google Cloud Pages, and more) serving content and computation to
many client computers, as it is much easier to outsource all server hosting needs
to a third-party (especially for individuals and smaller organizations with tight
budgets). The traditional security measure to protect sensitive data in-transit
and at-rest from both network eavesdroppers and the cloud providers themselves
is end-to-end (E2E) encryption, but because of modern inference/frequency
analysis attacks discovered in the early 2010s, we nowadays need oblivious
computation in addition to the standard end-to-end (E2E) encryption for safe
and scalable cloud computing. To add oblivious computation to Kubernetes and
Etcd for safe and scalable cloud computing is the aim of my Master Capstone
Project, Locker 2.0.

Problem Motivation
Kubernetes is a container manager, designed by the Linux Foundation for the
easy scalability of distributed computing resources on shared computer servers,
and it is commonly used in a cloud environment for resource management [1].
Etcd is a key-value data storage, designed by the Linux Foundation for the easy
scalability of reliable key-value data storage, and is commonly used in a cloud
environment for data storage [2]. Modern Internet connections are end-to-end
(E2E) encrypted with the Hypertext Transfer Protocol Secure (HTTPS) protocol,
which is the Hypertext Transfer Protocol (HTTP) over Transport Layer Security
(TLS) protocol using public key/digital certificates signed by widely trusted
third party certificate authorities (CAs) [3]. HTTPS provides end-to-end (E2E)
encryption for data traveling over the Internet, only leaking metadata (which is
still a concern, as we shall see later). Kubernetes does have an option to enable
at-rest encryption for Secrets (password, tokens, and keys), which encrypts data
such that it is stored to cloud providers as ciphertext (which is still a concern,
as we also shall see later) [4]. Etcd is, by default, unencrypted without the

1

https://kubernetes.io/docs/concepts/overview/
https://www.ibm.com/think/topics/etcd
https://www.cloudflare.com/learning/ssl/what-is-https/
https://kubernetes.io/docs/concepts/configuration/secret/


usage of a third-party encryption measure (such as Kubernetes Secrets), which
makes it unsuitable to store any sensitive information without such measures.
Therefore, by default, Kubernetes and Etcd over the Internet is not safe for
cloud computing. This vulnerability is due to cloud providers being able to
use frequency/inference analysis attacks on ciphertext and metadata using the
information leaked from data access patterns, like in Muhammad Naveed et
al. [5].

Solution Introduction
Oblivious computation is a subfield of cybersecurity that focuses on obscuring
data access patterns to prevent the leakage of data access patterns, assuming
the existence of one-way functions. It is typically accomplished by the client
continuously encrypting and shuffling data around, such that the adversary
cannot tell if any given data access was “real”/desired or “fake”/deceptive,
thus preventing the adversary from performing any inference/frequency analysis
attacks (although there is still the possibility of performing side-channel attacks
and currently unknown attacks) [6]. It was first founded by Oded Goldreich &
Rafail Ostrovsky, who wanted to safeguard commercial software systems against
software piracy in the 1980s and 1990s. They devised the concept of oblivious
random-access memory (ORAM), which is a create-read-update-delete (CRUD)
data structure designed to hide data access patterns from any adversary that
can observe, repeatedly run, and tamper with the computer system. It worked,
but it was prohibitively slow for any practical usage (especially for the much
slower computers of those times), as it had a time complexity of O(t log t3).
There was a long gap in interest in oblivious computation from the global
cybersecurity community until the early 2010s, with Mohammad Saiful Islam et
al. in 2014 publishing a research paper containing their new inference/frequency
analysis attack, called the IKK attack, that broke encrypted databases’ security
[7]. The cybersecurity community quickly took notice of the new IKK attack,
with Muhammad Naveed et al. in 2015 and Paul Grubbs et al. in 2017 both
publishing follow-up research papers that refined the IKK attack’s technique and
managed to break more encrypted databases [8]. This was becoming a perturbing
problem for the cybersecurity community with no clear defense against such
inference/frequency analysis attacks, so urgent work was needed on this pressing
problem.

Solution Definition
Emil Stefanov et al. published a research paper in 2013 that used a simple
yet innovative binary tree data structure, called PathORAM, to make Oded
Goldreich & Rafail Ostrovsky’s ORAM performance practical, reducing its
time complexity to just O(log n2) [9]. This was a major advancement for the
subfield of oblivious computation that arrived at precisely the right time, as
the Mohammad Saiful Islam et al. paper was published the following year and
PathORAM was the only viable defense against the IKK attack. Cybersecurity

2

https://cs.brown.edu/~seny/pubs/edb.pdf
https://web.cs.ucla.edu/~rafail/PUBLIC/09.pdf
https://personal.utdallas.edu/~muratk/publications/p235-islam.pdf
https://eprint.iacr.org/2017/468.pdf
https://eprint.iacr.org/2013/280.pdf


researchers rushed to follow-up on the PathORAM data structure, but we will
be highlighting only two follow-up research papers for now, Daniel S. Roche
et al’s 2016 vORAM+HIRB oblivious data structure (ODS) and Alexandra
Boldyreval & Tianxin Tang’s 2022 Encrypted Multi-Map (EMM) oblivious data
structure (ODS), as we will need to know them to understand how Locker 2.0
adds oblivious computation to Kubernetes and Etcd [10] [11]. Daniel S. Roche
et al. focused on extending the practical usability of PathORAM to be a generic
oblivious map/dictionary that leaks few data access patterns while still retaining
a time complexity of O(log n2) with minor additional overhead. On the other
hand, Alexandra Boldyreval & Tianxin Tang concentrated on extending the
practical usability of PathORAM and vORAM+HIRB to be a generic oblivious
multi-map that leaks no data access patterns while being slightly slower than
PathORAM with a time complexity of O(m log n4). These data structures are
integrated into Locker 2.0 to provide the backbone of the oblivious computation
needed for safe and scalable cloud computing [12]. For more information, my
Master Capstone Report has several Sections discussing the technical details of
these research papers.

Solution Implementation
Locker 2.0 was implemented in 5 Phases, which took a total of 10 weeks to
implement. The source code of Locker 2.0 is free and open source (FOSS) under
the Creative Commons Attribution 4.0 International license and is available on
GitHub. For additional information, my Master Capstone Report has several
Sections discussing the technical details and performance of my Locker 2.0
implementation.

1. Phase 1: Develop a generic plaintext Etcd client-server communication
protocol in Golang, suitable for integration with Kubernetes.

2. Phase 2: Incorporate an existing C++ PathORAM implementation into
the plaintext Etcd protocol as an oblivious RAM (ORAM) data structure.

3. Phase 3: Extend the PathORAM implementation into using vO-
RAM+HIRB as an oblivious map/dictionary.

4. Phase 4: Include the Python vORAM+HIRB implementation into us-
ing EMM as an oblivious multi-map (the EMM implementation had to
be written from scratch in Golang, as at the time there were no FOSS
implementations of EMM available on the Internet).

5. Phase 5: Re-engineer the generic plaintext Etcd client-server communi-
cation protocol to use EMM to secure its data from any possible attack,
except for side-channel attacks and currently unknown attacks.

Conclusion
The normal Kubernetes container manager & Etcd key-value data storage
cannot be used securely in an Internet cloud computing environment, as their
end-to-end (E2E) encryption measures are not good enough to prevent cloud

3

https://eprint.iacr.org/2015/1126.pdf
https://eprint.iacr.org/2024/2091.pdf
https://personal-website-3bm.pages.dev/CSE_247B_Master_Capstone_Project_Ismail_Ahmed.pdf
https://personal-website-3bm.pages.dev/CSE_247B_Master_Capstone_Project_Ismail_Ahmed.pdf
https://github.com/iyahmed/Locker-2.0
https://personal-website-3bm.pages.dev/CSE_247B_Master_Capstone_Project_Ismail_Ahmed.pdf


providers from performing inference/frequency analysis attacks on encrypted
data, thus compromising the security and privacy of all users. Therefore, an
additional subfield of cybersecurity, called oblivious computation, must be used
together with the standard end-to-end (E2E) encryption policies for safe cloud
computing. That is the reason behind my Master Capstone Project and Master
Capstone Report, Locker 2.0, which is designed as a drop-in Etcd client-server
communication protocol for usage with Kubernetes. Locker 2.0, when used
with standard information security practices (such as the NIST Cybersecurity
Framework 2.0), provides secure and scalable cloud computing that is currently
invulnerable to any attack except for side-channel attacks and currently unknown
attacks [13].

References (IEEE Style)
1. “Overview”, Kubernetes. [Online]. Available: https://kubernetes.io/docs/concepts/overview/.
2. “What Is etcd?”, IBM. 17-Apr.-2025. [Online]. Available: https://www.ibm.com/think/topics/etcd.
3. “What is HTTPS?”, [Online]. Available: https://www.cloudflare.com/learning/ssl/what-

is-https/.
4. “Secrets”, Kubernetes. [Online]. Available: https://kubernetes.io/docs/concepts/configuration/secret/.
5. M. Naveed, S. Kamara, and C. V. Wright, “Inference Attacks on

Property-Preserving Encrypted Databases,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver Colorado USA: ACM, Oct. 2015, pp. 644–655. doi:
10.1145/2810103.2813651.

6. O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” Journal of the ACM, vol. 43, no. 3, pp. 431–473, May
1996.

7. M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Inference attack against
encrypted range queries on outsourced databases,” in Proceedings of the
4th ACM Conference on Data and Application Security and Privacy. San
Antonio Texas USA: ACM, Mar. 2014, pp. 235–246.

8. P. Grubbs, T. Ristenpart, and V. Shmatikov, “Why Your Encrypted
Database Is Not Secure,” in Proceedings of the 16th Workshop on Hot
Topics in Operating Systems. Whistler BC Canada: ACM, May 2017,
pp. 162–168.

9. E. Stefanov, M. van Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren, X.
Yu, and S. Devadas, “Path ORAM: An Extremely Simple Oblivious RAM
Protocol,” Journal of the ACM, vol. 65, no. 4, pp. 1–26. 10. D. S. Roche,
A. Aviv, and S. G. Choi, “A Practical Oblivious Map Data Structure with
Secure Deletion and History Independence,” in 2016 IEEE Symposium on
Security and Privacy (SP). San Jose, CA: IEEE, May 2016, pp. 178–197.

10. D. S. Roche, A. Aviv, and S. G. Choi, “A Practical Oblivious Map Data
Structure with Secure Deletion and History Independence,” in 2016 IEEE
Symposium on Security and Privacy (SP). San Jose, CA: IEEE, May 2016,
pp. 178–197.

11. A. Boldyreva and T. Tang, “Encrypted Multi-map that Hides Query,

4

https://github.com/iyahmed/Locker-2.0
https://personal-website-3bm.pages.dev/CSE_247B_Master_Capstone_Project_Ismail_Ahmed.pdf
https://personal-website-3bm.pages.dev/CSE_247B_Master_Capstone_Project_Ismail_Ahmed.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.29.pdf


Access, and Volume Patterns,” in Security and Cryptography for Networks,
C. Galdi and D. H. Phan, Eds. Cham: Springer Nature Switzerland, 2024,
vol. 14973, pp. 230–251.

12. I. Ahmed, “Master Capstone Project: Locker 2.0 - Oblivious Computation
for the Etcd Key-Value Datastore”. Jun. 2025. [Online]. Available:
https://personal-website-3bm.pages.dev/CSE_247B_Master_Capstone_Project_Ismail_Ahmed.pdf.

13. C. Pascoe, S. Quinn, and K. Scarfone, “The NIST Cybersecurity
Framework (CSF) 2.0”, NIST. 26-Feb.-2025. [Online]. Available:
https://www.nist.gov/publications/nist-cybersecurity-framework-csf-20.

Footnotes
• I am a recent honors graduate from the University of California, Santa

Cruz (UCSC) with a Master of Science in Computer Science & Engineering,
a Bachelor of Arts in Economics, and a Bachelor of Science in Computer
Science.

• To contact me with any further questions, please see my LinkedIn, GitHub,
and email for reference. The best way to reach me is through email.

• For a permanent downloadable PDF verison of this blog post, here is the
link.

• Thank you, reader, for taking the time out of your day to read my personal
blog. I hope to provide you with informative and useful content.

5

https://linkedin.com/in/ismail8ahmed
https://github.com/Ismail8Ahmed
mailto:contactismail8ahmed@gmail.com
mailto:contactismail8ahmed@gmail.com
https://personal-website-3bm.pages.dev/post_2.pdf
https://personal-website-3bm.pages.dev/post_2.pdf

	Abstract
	Problem Motivation
	Solution Introduction
	Solution Definition
	Solution Implementation
	Conclusion
	References (IEEE Style)
	Footnotes

